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Abstract

Sophisticated models for the electrocardiographic in-
verse problem are available, but their reliance on imag-
ing data and large numbers of electrodes limit their use.
Simple models such as the single equivalent dipole model
(SEDM) therefore remain relevant. We developed a prob-
abilistic approach to the equivalent unbounded uniform
single dipole problem and developed a natural extension
to the bounded nonuniform case that relies on a patient-
specific statistical inference of the propagation mechanism
between the location of the dipole and the electrode loca-
tions. The two models were tested on data simulated with
a detailed heart-torso model with four different activation
sequences and three different sets of tissue characteristics.
We observed a throughout enhancement of the ability to re-
construct the ECG of the patient-specific model when com-
pared to the uniform unbounded dipole model.

1. Introduction

Modeling the electrical activity of the heart as a sin-
gle, time-varying electric current dipole dates back to
Einthoven et al.[1]. Einthoven’s triangle [2, volume 1 sec-
tion 10.3.6] assumes a single fixed dipole in an unbounded
uniform body. Information from leads I, II, III of the stan-
dard ECG allows measurement of the individual compo-
nents of such a dipole. However, the assumption of an
uniform body significantly limits the interpretability of the
resulting dipole parameters. A current dipole with magni-
tude pt ∈ R3 and position xp ∈ R3 in a conductor with an
arbitrary bounded volume, generates a potential

yit = c(xi,xp) · pt, c : R3 × R3 → R3 (1)

at position xi ∈ R3, where i ∈ {1, ...,K} is the index of
the measurements [2, Chapter 10]. This is the main ground
for the development of vectorcardiography and Frank’s
lead system, whose goal is to measure each of the com-
ponents of pt in an orthogonal basis in the equivalent elec-
trical space. Frank [3] established a method for estimating
an orthogonal lead system, by inducing a current dipole
in three directions in an artificial torso and measuring the
resulting potential at the surface. This led to the creation
of a 3d lead system called the Frank’s lead system defined
by Fx, Fy, Fz leads that represents an orthogonal basis of
the equivalent electrical space. The vectorcardiogram ob-
tained using this lead system has been successfully applied
to a number of problems [4].

An important limitation of this approach is that it is not
patient-specific, being experimentally derived from an arti-
ficial torso. Therefore we developed a new patient-specific
SEDM and a method to solve the related inverse problem
(finding the posterior distribution of the latent parameters
given the data of a given patient) in a Bayesian statisti-
cal setting. We tested the method on simulated ECGs pro-
duced with a detailed human heart and torso model, with
different activation origins and different conduction prop-
erties.

2. Equivalent Unbounded dipole model

Our goal is to estimate the posterior distribution of the
parameters given the observed data.

The following notation will be used throughout the
rest of this paper: If ait is a scalar variable indexed by
i ∈ {1, ...,K} and t ∈ {1, ..., T}, we write A =
(a11, a

2
1, ...a

K
T ). We will write ∥a∥ for the L2-norm (Eu-

clidean norm) of the vector a. Assuming propagation
through an unbounded homogeneous medium, the torso

Computing in Cardiology 2022; Vol 49 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2022.260



potentials are

yit|pt∼N
(
cHOM(xi) · pt, σ

2
i,t

)
, cHOM(xi) = xi/∥xi∥3

(2)
where pt represents the dipole vector of a current dipole
placed at 0.

If the measurements (yit)
i=1,...,K
t=1,...,T start at the beginning

of the QRS complex of the ECG then it is reasonable to
expect pt to be small at the beginning, since it corresponds
to the onset of the activation of the ventricles. There is no
a priori reason to expect that the components of the dipole
are positive or negative, so a Gaussian distribution centered
on 0 is a natural candidate for the prior distribution p0.

Most of the common sampling rates in the ECG domain
(sampling rate > 250 Hz) are higher than the frequency of
the dipole curve pt. Therefore, we expect a small deviation
between pt and pt+1, i.e., we expect ∥pt+1 − pt∥ to be
close to 0. This leads us to define the prior distribution as

pt+1|pt = N (pt, σ
2
pI), p0 = N (0, I). (3)

3. Our model

To make the SEDM model patient-specific we consider
the function c as the random variable from which the pos-
terior distribution given the observed data must be esti-
mated for each patient. To develop a Bayesian approach,
we need to define a prior over a function space and a like-
lihood. The main idea is to use the model developed in
section 2 to define a Gaussian process as a prior distribu-
tion over a function space. For f : R3 → R3 :

yit|f ,pt,xi∼N
(
cINH(xi) · pt, σ

2
i,t

)
cINH(xi;f) = {xi + f(xi)}/∥xi∥3

(4)

The prior over the function f will be defined as, follow-
ing Bishop [5] section 6.4:

f ∼ GP(0, kθ(x,x
′)) (5)

The prior and posterior are thus determined by the choice
of the kernel function k. We use a component-wise inde-
pendent scaled radial basis function (RBF) kernel defined
as

kν,l(x, x
′) = νexp(−(x− x′)2/2l2)

kθ(x,x
′) = diag(kνi,li(x[i],x

′[i]), i = 1, 2, 3).
(6)

The parameter ν determines the scale of the covariance
matrix and in our case controls the magnitude of f , i.e.,
how far we are from the uniform dipole model. The param-
eter l indicates the rate at which the covariance between
two points decreases. A small l would result in more vari-
ation being allowed for f between two neighboring points
x, x′.

Our goal is to obtain samples from the posterior dis-
tribution f(X),P |Y . Note that sampling from each
conditional distribution f(X)|P ,Y and P |f(X),Y can
be done by directly applying the definition of condition-
ing of a Gaussian process [5, Section 6.4.2] and by RTS
Kalman Smoothing [6] respectively. Therefore, we can use
a two-stage Gibbs sampler [7] to sample directly from the
posterior by sampling sequentially from each conditional
f(X)|P ,Y and P |f(X),Y .

4. Numerical Evaluation

In our simulations, we considered v = 10−4 and l = 1.
For each configuration we discard the first 300 samples of
the Gibbs sampler (the so called burn-in period) and use
the following 1000 samples. We use the samples to cal-
culate the mean posterior of each of the parameters P and
f(X). The sames samples are used with eq. (2) to gener-
ate samples of the reconstructed posterior ECG measure-
ments. The metric used to evaluate goodness of fit was
the coefficient of determination, known as R2, defined as
R2(y, z) = 1−

∑T
t=1(yt−zt)

2∑T
t=1(yt−ȳ)2

where ȳ = 1
T

∑T
t=1 yt.

We used a detailed anatomical model of the heart and
torso created from computed tomography data. Simula-
tions were performed on a bi-ventricular mesh with a uni-
form edge length of 200 µm. A human ventricular ionic
model [8] was used with a monodomain reaction-diffusion
equation. The potentials at 252 electrode locations on the
torso were computed using lead fields [9]. Three anatomi-
cal configurations were created: one with a full healthy tis-
sue, and two with low-conductivity zones with radii of 12
and 18 mm. In these zones the conductivity was 10 times
smaller than in the healthy tissue. For each configuration,
3 paced beats from different origins (A, B, C) and one nor-
mal ventricular beat were simulated. The pacing locations
and the low-conductivity zones are shown in Fig. 2. In to-
tal, 12 sets of signals were simulated. For computational
efficiency, the signals were sampled at 500 Hz.

We placed the dipole at the barycenter of the three stim-
ulation points A, B, and C. We use the following notation
for the figures: INH-DIP (Inhomogeneous-Dipole) corre-
sponds to the statistical model defined by eqs. (3) to (5),
and HOM-DIP corresponds to the statistical model defined
by eqs. (2) and (3).

We consider for each configuration (consisting of a cou-
ple of low-conduction radius and pacing type) the per pa-
tient inter-electrode median R2 score in section 4, where
we see that the INH-DIP model performed considerably
better than the HOM-DIP model. The corresponding re-
constructed electrograms are shown in figure 1.

In fig. 3, we show three different posterior mean dipole
curves (pt for t = 1, ..., T ) obtained for the sinusal rhythm
but with different structural configurations (scar radii from
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Stim Scar radius INH-DIPP HOM-DIP
SINUSAL 0 0.897 0.670

A 0 0.918 0.386
B 0 0.822 0.265
C 0 0.840 0.344

SINUSAL 12 0.884 0.654
A 12 0.922 0.388
B 12 0.827 0.290
C 12 0.853 0.441

SINUSAL 18 0.889 0.666
A 18 0.927 0.410
B 18 0.840 0.288
C 18 0.894 0.613

Table 1. Table showing results of the inter electrode me-
dian R2 score for each simulation setting.
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Figure 1. The means of the posterior measurements
Y |P , X for each model as well as the confidence inter-
vals (shaded) corresponding to µ ± 3σ for two leads for
the sinusal-18mm radius simulation.

0 to 18mm). We observe that the curves match during most
of the time but are different in the end of each curve. In
fig. 4, we show the mean posterior dipole curve for the
sinusal rhythm with 18mm scar radius. We can see that
the deviation observed in fig. 3 corresponds to the time
the wave front encounters the scar region, indicating that
indeed the deviations in fig. 3 indicates the inherent struc-
tural configuration.

5. Discussion

The model developed in section 2 is simplistic and sev-
eral approaches have been developed to reduce the model
error, e.g. by Frank [3]. However, to the best of our knowl-
edge, none of them is based on probabilistic modeling of
the function c in (1). We have presented a probabilistic
framework for solving the SEDM problem that allows us to
derive a natural extension to a patient-specific model that

Figure 2. Mesh of the modeled heart used for simula-
tions, with the location of the pacing sites (A, B, C) and
the low-conduction zone with a radius of 12 mm in blue
and a radius of 18 mm in red.
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Figure 3. Illustration of the posterior mean dipole curve
pt for the sinusal rhythm with three different scar sizes,
represented by the different colors.

outperforms the equivalent unbounded dipole model in all
situations tested. There are several ways to further develop
and validate this model. One of them is the development of
the kernel function, for example, to handle the correlation
between the different components of the function f . Vali-
dation with clinical data is also a major challenge, as is the
ability of the model to handle even more uncertain data (no
knowledge of heart placement, varying geometries).
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Figure 4. Illustration of the dipole curve colored (left) by
the activation times, also shown in the heart surface (right)
for the sinusal 18mm scar radius.
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